The present study was to investigate the effect of lncRNA LINC00880 targeting CACNG5 on cell proliferation, migration, invasion, and apoptosis in spinal cord ependymoma (SCE) through the MAPK signaling pathway. GEO database was used to download gene expression data related with SCE (GSE50161 and GSE66354) and annotation file. LncRNA with differential expression was predicted by Multi Experiment Matrix website (MEM). The target gene was analyzed by KEGG pathway enrichment analysis. SCE tissues and adjacent tissues were collected. The positive expression of CACNG5 protein was tested by immunohistochemistry. Expression of LINC00880, CACNG5, and MAPK signaling pathway-related proteins was measured with qRT-PCR and Western blotting. Cell proliferation, migration, invasion, cycle, and apoptosis were detected using MTT, Transwell assay, Scratch test, and Flow cytometry. SCE tissues showed increased LINC00880 expression. CACNG5 was a target gene of LINC00880 and correlated with MAPK signaling pathway. Compared with adjacent tissues, SCE tissues showed lower positive expression of CACNG5. Compared with the blank group, LINC00880 expression was higher in the LINC00880 vector and LINC00880 vector + CACNG5 vector groups, and lower in the si-LINC00880 and si-LINC00880 + si-CACNG5 groups; in the LINC00880 vector and si-CACNG5 groups, expression of survivin, p38MAPK, ERK1/2, JNK1/2/3 increased and CACNG5 and Bax expression reduced, the proliferation, invasion and migration of tumor cells increased, and apoptosis rate decreased. Opposite results were found in the si-LINC00880 and CACNG5 vector groups. The findings indicate that lncRNA LINC00880 targeting CACNG5 inhibits cell apoptosis and promotes proliferation, migration, and invasion in SCE through the MAPK signaling pathway.
CITATION STYLE
Wu, D. M., Wang, Y. J., Han, X. R., Wen, X., Wang, S., Shen, M., … Zheng, Y. L. (2018, September 1). LncRNA LINC00880 promotes cell proliferation, migration, and invasion while inhibiting apoptosis by targeting CACNG5 through the MAPK signaling pathway in spinal cord ependymoma. Journal of Cellular Physiology. Wiley-Liss Inc. https://doi.org/10.1002/jcp.26329
Mendeley helps you to discover research relevant for your work.