The actual electronic band structure of a rubrene single crystal

14Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A proper understanding on the charge mobility in organic materials is one of the key factors to realize highly functionalized organic semiconductor devices. So far, however, although a number of studies have proposed the carrier transport mechanism of rubrene single crystal to be band-like, there are disagreements between the results reported in these papers. Here, we show that the actual dispersion widths of the electronic bands formed by the highest occupied molecular orbital are much smaller than those reported in the literature, and that the disagreements originate from the diffraction effect of photoelectron and the vibrations of molecules. The present result indicates that the electronic bands would not be the main channel for hole mobility in case of rubrene single crystal and the necessity to consider a more complex picture like molecular vibrations mediated carrier transport. These findings open an avenue for a thorough insight on how to realize organic semiconductor devices with high carrier mobility.

Cite

CITATION STYLE

APA

Nitta, J., Miwa, K., Komiya, N., Annese, E., Fujii, J., Ono, S., & Sakamoto, K. (2019). The actual electronic band structure of a rubrene single crystal. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46080-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free