Hyperdimensional Computing (HDC), also known as Vector Symbolic Architecture (VSA), is an emerging AI algorithm inspired by the way the human brain functions. Compared with deep neural networks (DNNs), HDC possesses several advantages such as smaller model size, less computation cost, and one/few-shot learning, making it a promising alternative computing paradigm. With the increasing deployment of AI in safety-critical systems such as healthcare and robotics, it is not only important to strive for high accuracy, but also to ensure its robustness under even highly uncertain and adversarial environments. However, recent studies show that HDC, just like DNNs, is vulnerable to both cyber attacks (e.g., adversarial attacks) and hardware errors (e.g., memory failures). While a growing body of research has been studying the robustness of HDC, there is a lack of systematic review of research efforts on this increasingly-important topic. To the best of our knowledge, this paper presents the first survey dedicated to review the research efforts made to the robustness of HDC against cyber attacks and hardware errors. While the performance and accuracy of HDC as an AI method still expects future theoretical advancement, this survey paper aims to shed light and call for community efforts on robustness research of HDC.
CITATION STYLE
Ma, D., Zhang, S., & Jiao, X. (2023). Robust Hyperdimensional Computing against Cyber Attacks and Hardware Errors: A Survey. In Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC (pp. 598–605). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1145/3566097.3568355
Mendeley helps you to discover research relevant for your work.