Rice Responses to Elevated CO2Concentrations and High Temperatures

9Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Long-term CO2enrichment experiments under various temperature conditions on "Akihikari" rice were conducted using Temperature Gradient Chambers (TGCs) over 4 growing seasons (1992-1995). Measurements were made of crop biomass production, yield, and water use efficiency (WUE), and also of single leaf photosynthesis and transpiration, to evaluate interactive effects of CO2and temperature on those attributes. Temperature conditions created in the TGC ranged from 21-30 °C on average over entire growth season. Doubling CO2concentration increased total biomass at maturity by 26% on average. The relative enhancement rate in biomass by doubling CO2tended to increase slightly with a rise in temperature. The doubling CO2upward shifted the optimum temperature for single leaf photosynthesis by 5 °C. Also it increased yield under near outdoor temperature conditions to a similar extent as the dry matter production. However, the yield decreased drastically with a temperature increase both under the ambient and the doubling CO2, due to spikelet sterility induced by high temperature at the flowering period. Doubling CO2treatments enhanced WUE by 34% on average over the entire range of temperature conditions. The enhancement rate in WUE was maximal (49%) at 26 °C, and decreased with a temperature rise at a rate of 7 % per °C. These results suggest that interactive effects of CO2and temperature on various processes of crop production are key issues for understanding and evaluating crop production under global climate change. © 1997, The Society of Agricultural Meteorology of Japan. All rights reserved.

Cite

CITATION STYLE

APA

Nakagawa, H., Hone, T., Kim, H. Y., Ohnishi, H., & Homma, K. (1997). Rice Responses to Elevated CO2Concentrations and High Temperatures. Journal of Agricultural Meteorology, 52(5), 797–800. https://doi.org/10.2480/agrmet.52.797

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free