Sensor-Based Prediction of Mental Effort during Learning from Physiological Data: A Longitudinal Case Study

6Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Trackers for activity and physical fitness have become ubiquitous. Although recent work has demonstrated significant relationships between mental effort and physiological data such as skin temperature, heart rate, and electrodermal activity, we have yet to demonstrate their efficacy for the forecasting of mental effort such that a useful mental effort tracker can be developed. Given prior difficulty in extracting relationships between mental effort and physiological responses that are repeatable across individuals, we make the case that fusing self-report measures with physiological data within an internet or smartphone application may provide an effective method for training a useful mental effort tracking system. In this case study, we utilized over 90 h of data from a single participant over the course of a college semester. By fusing the participant’s self-reported mental effort in different activities over the course of the semester with concurrent physiological data collected with the Empatica E4 wearable sensor, we explored questions around how much data were needed to train such a device, and which types of machine-learning algorithms worked best. We concluded that although baseline models such as logistic regression and Markov models provided useful explanatory information on how the student’s physiology changed with mental effort, deep-learning algorithms were able to generate accurate predictions using the first 28 h of data for training. A system that combines long short-term memory and convolutional neural networks is recommended in order to generate smooth predictions while also being able to capture transitions in mental effort when they occur in the individual using the device.

References Powered by Scopus

85916Citations
29971Readers
Get full text

Understanding of a convolutional neural network

3833Citations
4231Readers
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Agarwal, A., Graft, J., Schroeder, N., & Romine, W. (2021). Sensor-Based Prediction of Mental Effort during Learning from Physiological Data: A Longitudinal Case Study. Signals, 2(4), 886–901. https://doi.org/10.3390/signals2040051

Readers over time

‘22‘23‘24‘25036912

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

50%

Researcher 2

33%

Professor / Associate Prof. 1

17%

Readers' Discipline

Tooltip

Computer Science 2

40%

Agricultural and Biological Sciences 1

20%

Neuroscience 1

20%

Engineering 1

20%

Save time finding and organizing research with Mendeley

Sign up for free
0