Nucleotide substitution rate of mammalian mitochondrial genomes

376Citations
Citations of this article
308Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present here for the first time a comprehensive study based on the analysis of closely related organisms to provide an accurate determination of the nucleotide substitution rate in mammalian mitochondrial genomes. This study examines the evolutionary pattern of the different functional mtDNA regions as accurately as possible on the grounds of available data, revealing some important 'genome laws.' The main conclusions can be summarized as follows. (1) High intragenomic variability in the evolutionary dynamic of mtDNA was found. The substitution rate is strongly dependent on the region considered, and slow- and fast-evolving regions can be identified. Nonsynonymous sites, the D-loop central domain, and tRNA and rRNA genes evolve much more slowly than synonymous sites, and the two peripheral D-loop region domains. The synonymous rate is fairly uniform over the genome, whereas the rate of non-synonymous sites depends of functional constraints and therefore differs considerably between genes. (2) The commonly accepted statement that mtDNA evolves more rapidly than nuclear DNA is valid only for some regions, thus it should be referred to specific mitochondrial components. In particular, nonsynonymous sites show comparable rates in mitochondrial and nuclear genes; synonymous sites and small rRNA evolve about 20 times more rapidly tRNAs about 100 times more rapidly in mitochondria than in their nuclear counterpart. (3) A species-specific evolution is particularly evident in the D-loop region. As the divergence times of the organism pairs under consideration are known with sufficient accuracy, absolute nucleotide substitution rates are also provided.

Cite

CITATION STYLE

APA

Pesole, G., Gissi, C., De Chirico, A., & Saccone, C. (1999). Nucleotide substitution rate of mammalian mitochondrial genomes. Journal of Molecular Evolution, 48(4), 427–434. https://doi.org/10.1007/PL00006487

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free