Melittin is a promising antitumor substance; however, it is a nonspecific cytolytic peptide, which limits its clinical application. In this study, melittin liposomes (Mel-Lip) and hyaluronic acid (HA)-modified Mel-Lip (Mel-HA-Lip) were designed to reduce the toxicity and increase the anti-tumor effects of melittin. The optimal preparation procedure was evaluated using a uniform design based on the single factor method, and the concentration of HA was determined based on the cellular uptake of coumarin 6 labeled HA-Lip. Liposomes and HA-modified liposomes were evaluated in vitro by assessing cytotoxicity, cellular uptake, and release behavior. Liposomes prepared in the optimum formulation improved stability, with a particle size of 132.7 ± 1.55 nm, zeta potential of −11.5 ± 1.51 mV, entrapment efficiency of 86.25 ± 1.28%, and drug-loading efficiency of 3.91 ± 0.49%. Cellular uptake tests revealed that the uptake of nanoparticles significantly increased with HA modification, suggesting that HA modification enhanced the internalization of liposomes within cells, which was consistent with the results of the cytotoxicity analysis. Furthermore, in vitro release experiments showed that Mel-HA-Lip possessed a stronger sustained-release effect compared with Mel-Lip. The results of this experiment provide insight into the potential tumor-targeting effects of melittin.
CITATION STYLE
Li, Y., Ruan, S., Wang, Z., Feng, N., & Zhang, Y. (2021). Hyaluronic acid coating reduces the leakage of melittin encapsulated in liposomes and increases targeted delivery to melanoma cells. Pharmaceutics, 13(8). https://doi.org/10.3390/pharmaceutics13081235
Mendeley helps you to discover research relevant for your work.