Dual deep learning networks based load forecasting with partial real-time information and its application to system marginal price prediction

16Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Load power forecast is one of most important tasks in power systems operation and maintenance. Enhancing its accuracy can be helpful to power systems scheduling. This paper presents how to use partial real-time temperature information in forecasting load power, which is usually done using past load power and temperature data. The partial real-time temperature information means temperature information for only part of the entire prediction time interval. To this end, a long short-term memory (LSTM) network is trained using past temperature and load power data in order to forecast load power, where forecasted load power depends on the temperature prediction implicitly. Then, in order to deal with the case where nontrivial temperature prediction errors happen, a multi-layer perceptron (MLP) network is trained using the past data describing the relation between temperature variation and load power variation. Then, the temperature is measured at the beginning of the prediction time-interval and compensated load forecast is computed by adding the output of the LSTM and that of the MLP whose input is the temperature prediction error. It is shown that the proposed compensation using the real-time temperature information indeed improves performance of load power forecast. This improved load forecast is used to predict system marginal price (SMP). The proposed method is validated using the real temperature and load power data of South Korea.

Cite

CITATION STYLE

APA

Yudantaka, K., Kim, J. S., & Song, H. (2019). Dual deep learning networks based load forecasting with partial real-time information and its application to system marginal price prediction. Energies, 13(1). https://doi.org/10.3390/en13010148

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free