Nodal is the major effector of left-right axis development. In mice, Nodal forms heterodimers with Gdf1 and is inhibited by Cerl2/Dand5 at the node, and by Lefty1 in the lateral plate mesoderm (LPM). Studies in zebrafish have suggested some parallels, but also differences, between left-right patterning in mouse and zebrafish. To address these discrepancies, we generated single and double zebrafish mutants for southpaw (spaw, the Nodal ortholog), dand5 and lefty1, and performed biochemical and activity assays with Spaw and Vg1/ Gdf3 (the Gdf1 ortholog). Contrary to previous findings, spaw mutants failed to initiate spaw expression in the LPM, and asymmetric heart looping was absent, similar to mouse Nodal mutants. In blastoderm assays, Vg1 and Spaw were interdependent for target gene induction, and contrary to previous results, formed heterodimers. Loss of Dand5 or Lefty1 caused bilateral spaw expression, similar to mouse mutants, and Lefty1 was replaceable with a uniform Nodal signaling inhibitor. Collectively, these results indicate that Dand5 activity biases Spaw- Vg1 heterodimer activity to the left, Spaw around Kupffer’s vesicle induces the expression of spaw in the LPM and global Nodal inhibition maintains the left bias of Spaw activity, demonstrating conservation between zebrafish and mouse mechanisms of left-right patterning.
CITATION STYLE
Montague, T. G., Gagnon, J. A., & Schier, A. F. (2018). Conserved regulation of nodal-mediated left-right patterning in zebrafish and mouse. Development (Cambridge), 145(24). https://doi.org/10.1242/dev.171090
Mendeley helps you to discover research relevant for your work.