We have established that the serum- and glucocorticoid-inducible protein kinase (Sgk) is a new component of the hyperosmotic stress response. Treatment of NMuMg mammary epithelial cells with the organic osmolyte, sorbitol, caused the stable accumulation of Sgk transcripts and protein after an approximately 4-h lag. Transient transfection of a series of sgk-CAT reporter plasmids containing either 5' deletions or continuous 6-base pair substitutions identified a hyperosmotic stress-regulated element that is GC-rich and is necessary for the sorbitol stimulation of sgk gene promoter activity. Gel shift analysis identified four major DNA-protein complexes in the hyperosmotic stress, regulated element that, by competition with excess consensus wild type and mutant oligonucleotides and by antibody supershifts, contains the Sp1 transcription factor. Several lines of evidence suggest that the p38 MAPK signaling pathway mediates the hyperosmotic stress stimulation of sgk gene expression. Treatment with pharmacological inhibitors of p38 MAPK or with a dominant negative form of MKK3, an upstream regulator of p38 MAPK, significantly reduced or ablated the sorbitol induction of sgk promoter activity or protein production. Using an in vitro peptide transphosphorylation assay, sorbitol treatment activates either endogenous or exogenous Sgk that is localized to the cytoplasmic compartment. Thus, we propose that the stimulated expression of enzymatically active Sgk after sorbitol treatment is a newly defined component of the p38 MAPK-mediated response to hyperosmotic stress.
CITATION STYLE
Bell, L. M., Leong, M. L. L., Kim, B., Wang, E., Park, J., Hemmings, B. A., & Firestone, G. L. (2000). Hyperosmotic stress stimulates promoter activity and regulates cellular utilization of the serum- and glucocorticoid-inducible protein kinase (Sgk) by a p38 MAPK-dependent pathway. Journal of Biological Chemistry, 275(33), 25262–25272. https://doi.org/10.1074/jbc.M002076200
Mendeley helps you to discover research relevant for your work.