Synthesis of single crystalline silicon nanowires (SiNWs) array at room temperature by metal assisted chemical etching and its optical absorption measurements have been reported in this article. It has been confirmed that, SiNWs were formed uniformly on p-type silicon substrate by electroless deposition of Cu and Ag nanoparticles followed by wet chemical etching in (Hydrogen Fluoride) HF based Fe(NO3)3 solution. Synthesized SiNW structures were analyzed and investigated by Scanning Electron Microscopy (SEM) and Ultraviolet-Visible (UV-VIS) spectrophotometer. Formation of SiNWs is evident from the SEM images and morphology of the structures depends upon the concentration of chemical solution and etching time. The synthesized SiNWs have shown strong broadband optical absorption exhibited from UVspectroscopy. More than 82% absorption of incident radiation is found for Cu treated samples and a maximum of 83% absorption of incident radiation is measured for Ag synthesized samples which is considerably enhanced than that of silicon substrate as they absorbed maximum of 43% of incoming radiation only.
CITATION STYLE
Md Huq F, H. M. (2014). Metal Assisted Synthesis of Single Crystalline Silicon Nanowires at Room Temperature for Photovoltaic Application. Journal of Nanomedicine & Nanotechnology, 05(04). https://doi.org/10.4172/2157-7439.1000221
Mendeley helps you to discover research relevant for your work.