In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal component analysis with absolute principal component scores (PCA-APCS), UNIMX and positive matrix factorization (PMF) was applied to analyze the data collected during 1 year of sampling campaign (2010-2011). The PM2.5 samples were characterized through its composition looking for trace elements, inorganic ions and organic and elemental carbon. These three models identified some common sources of PM2.5: marine aerosol, crustal material, traffic, secondary aerosols (secondary sulfate and secondary nitrate resolved by PMF), a mixed source of heavy fuels combustion and biomass burning, and industrial emissions. The three models predicted that the major sources of PM2.5 in the Metropolitan Area of Costa Rica were related to anthropogenic sources (73%, 65% and 69%, respectively, for PCA-APCS, Unmix and PMF) although natural sources also contributed to PM2.5 (21%, 24% and 26%). On average, PCA and PMF methods resolved 94% and 95% of the PM2.5 mass concentrations, respectively. The results were comparable to the estimate using UNMIX.
CITATION STYLE
Murillo, J. H., Roman, S. R., Marín, J. F. R., & Cardenas, B. (2013). Source Apportionment of PM2.5 in the Metropolitan Area of Costa Rica Using Receptor Models. Atmospheric and Climate Sciences, 03(04), 562–575. https://doi.org/10.4236/acs.2013.34059
Mendeley helps you to discover research relevant for your work.