Background: Macrophages, the key component of the tumor microenvironment, are differentiated mononuclear phagocyte lineage cells that are characterized by specific phenotypic characteristics that have been implicated in tumor growth, angiogenesis, and invasion. CX3CR1, the chemoattractant cytokine CX3CL1 receptor, plays an important role in modulating inflammatory responses, including monocyte homeostasis and macrophage phenotype and function. However, the role of CX3CR1 in the regulation of the tumor inflammatory microenvironment is not fully understood.Methods: Using in vivo hepatic metastasis model, human colon carcinoma specimens, immunohistochemical staining, TUNEL staining, flow cytometry analysis, Western blotting assay and co-culture in three-dimensional peptide gel, we determined the effects of CX3CR1 on angiogenic macrophage survival and tumor metastasis.Results: In this study, we found that CX3CR1 was expressed in human colon carcinomas in a histologic grade- and stage-dependent manner, and CX3CR1 upregulation in TAMs was correlated with poor prognosis. Furthermore, we showed that in a microenvironment lacking CX3CR1, the liver metastasis of colon cancer cells was significantly inhibited. The underlying mechanism is associated with decrease accumulation of angiogenic macrophages that can be partly attributed to increased apoptosis in the tumor microenvironment, thus leading to impaired tumor angiogenesis in the liver and suppressed tumor metastasis.Conclusions: Our results suggest a role of CX3CR1 in angiogenic macrophage survival in the tumor microenvironment contributing to tumor metastasis. © 2013 Zheng et al.; licensee BioMed Central Ltd.
CITATION STYLE
Zheng, J., Yang, M., Shao, J., Miao, Y., Han, J., & Du, J. (2013). Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Molecular Cancer, 12(1). https://doi.org/10.1186/1476-4598-12-141
Mendeley helps you to discover research relevant for your work.