Risk Assessment of Pseudomonas aeruginosa in Water

  • Gerba K
  • Contents
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are persistence (DT50) of the pesticide, and its sorption/desorption(Koc) characteristics. These parameters may vary for the same pesticide from geographic site-to-site and with soil depth. The interactions that normally occur between pesticides and dissolved organic matter (DOM) or WDC are yet other factors that may complicate pesticide leaching behavior.The soil mobility of pesticides is normally tested both in the laboratory and in the field. Lab studies are initially performed to give researchers a preliminary appraisal of the relative mobility of a pesticide. Later, field lysimeter studies can be performed to provide more natural leaching conditions that emulate the actual field use pattern. Lysimeter studies give the most reliable information on the leaching behavior of a pesticide under field conditions, but these studies are time-consuming and expensive and cannot be performed everywhere. It is for this reason that the laboratory soil column leaching approach is commonly utilized to profile the mobility of a pesticide,and appraise how it behaves in different soils, and relative to other pesticides.Because the soil structure is chemically and physically heterogenous, different pesticide tests may produce variable DT50 and Koc values; therefore, initial pesticide mobility testing is undertaken in homogeneously packed columns that contain two or more soils and are eluted at constant flow rates. Such studies are done in duplicate and utilize a conservative tracer element. By fitting an appropriate mathematical model to the breakthrough curve of the conservative tracer selected,researchers determine key mobility parameters, such as pore water velocity, the column-specific dispersion coefficient, and the contribution of non equilibrium transport processes. Such parameters form the basis for estimating the probable transport and degradation rates that will be characteristic of the tested pesticide. Researchers also examine how a pesticide interacts with soil DOM and WDC, and what contribution from facilitated transport to mobility is made as a result of the effects of pH and ionic strength. Other methods are used to test how pesticides may interact with soil components to change mobility. Spectroscopic approaches are used to analyze the nature of soil pesticide complexes. These may provide insight into the mechanism by which interactions occur. Other studies may be performed to determine the effect of agricultural practices (e.g., tillage) on pesticide leaching under controlled conditions using intact soil cores from the field. When preferential flow is suspected to occur, dye staining is used to examine the contribution of macropores to pesticide transport. These methods and others are addressed in the text of this review.

Cite

CITATION STYLE

APA

Gerba, K. D. M. and C. P., & Contents. (2009). Risk Assessment of Pseudomonas aeruginosa in Water. Reviews of environmental contamination and toxicology (Vol. 201, pp. 1–38).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free