Background-Upregulated by atheroprotective flow, the transcription factor Krüppel-like factor 2 (KLF2) is crucial for maintaining endothelial function. MicroRNAs (miRNAs) are noncoding small RNAs that regulate gene expression at the posttranscriptional level. We examined the role of miRNAs, particularly miR-92a, in the atheroprotective flow-regulated KLF2. Methods and Results-Dicer knockdown increased the level of KLF2 mRNA in human umbilical vein endothelial cells, suggesting that KLF2 is regulated by miRNA. In silico analysis predicted that miR-92a could bind to the 3′ untranslated region of KLF2 mRNA. Overexpression of miR-92a decreased the expression of KLF2 and the KLF2-regulated endothelial nitric oxide synthase and thrombomodulin at mRNA and protein levels. A complementary finding is that miR-92a inhibitor increased the mRNA and protein expression of KLF2, endothelial nitric oxide synthase, and thrombomodulin. Subsequent studies revealed that atheroprotective laminar flow downregulated the level of miR-92a precursor to induce KLF2, and the level of this flow-induced KLF2 was reduced by miR-92a precursor. Furthermore, miR-92a level was lower in human umbilical vein endothelial cells exposed to the atheroprotective pulsatile shear flow than under atheroprone oscillatory shear flow. Anti-Ago1/2 immunoprecipitation coupled with real-time polymerase chain reaction revealed that pulsatile shear flow decreased the functional targeting of miR-92a precursor/KLF2 mRNA in human umbilical vein endothelial cells. Consistent with these findings, mouse carotid arteries receiving miR-92a precursor exhibited impaired vasodilatory response to flow. Conclusions- Atheroprotective flow patterns decrease the level of miR-92a, which in turn increases KLF2 expression to maintain endothelial homeostasis. © 2011 American Heart Association, Inc.
CITATION STYLE
Wu, W., Xiao, H., Laguna-Fernandez, A., Villarreal, G., Wang, K. C., Geary, G. G., … Shyy, J. Y. J. (2011). Flow-dependent regulation of krüppel-like factor 2 is mediated by MicroRNA-92a. Circulation, 124(5), 633–641. https://doi.org/10.1161/CIRCULATIONAHA.110.005108
Mendeley helps you to discover research relevant for your work.