Biopolymers Used for Receptor Immobilization for Nickel-Detection Biosensors in Food

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Food is humans’ main source of nickel intake, which is responsible for the prevalence of allergic contact dermatitis and other pathological afflictions. While robust, the classical methods for nickel detection—atomic absorption spectrometry and inductively coupled plasma mass spectrometry—are expensive and laborious; in contrast, modern methods that utilize sensors—of which most are electrochemical—have rapid run times, are cost-effective, and are easily assembled. Here, we describe the use of four biopolymers (alginate, agar, chitosan, and carrageenan) for receptor immobilization on biosensors to detect nickel ions and use an optimization approach with three biopolymer concentrations to assay analytical performance profiles. We measured the total performance of screen-printed carbon electrodes immobilized with the biopolymer–sensor combinations using cyclic voltammetry (CV). Voltammetric behavior favored the carrageenan biosensor, based on performance characteristics measured using CV, with sensitivities of 2.68 (for 1% biopolymer concentration) and 2.08 (for 0.5% biopolymer concentration). Our results indicated that among the four biopolymer combinations, carrageenan with urease affixed to screen-printed electrodes was effective at coupling for nickel detection.

Cite

CITATION STYLE

APA

Anchidin-Norocel, L., Savage, W. K., Gheorghita, R., & Amariei, S. (2023). Biopolymers Used for Receptor Immobilization for Nickel-Detection Biosensors in Food. Micromachines, 14(8). https://doi.org/10.3390/mi14081529

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free