The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota

25Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

Abstract

PCR amplification bias is a well-known problem in metagenomic analysis of arthropod communities. In contrast, variation of DNA degradation rates is a largely neglected source of bias. Differential degradation of DNA molecules could cause underrepresentation of taxa in a community sequencing sample. Arthropods are often collected by passive sampling devices, like malaise traps. Specimens in such a trap are exposed to varying periods of suboptimal storage and possibly different rates of DNA degradation. Degradation bias could thus be a significant issue, skewing diversity estimates. Here, we estimate the effect of differential DNA degradation on the recovery of community diversity of Hawaiian arthropods and their associated microbiota. We use a simple DNA size selection protocol to test for degradation bias in mock communities, as well as passively collected samples from actual Malaise traps. We compare the effect of DNA degradation to that of varying PCR conditions, including primer choice, annealing temperature and cycle number. Our results show that DNA degradation does indeed bias community analyses. However, the effect of this bias is of minor importance compared to that induced by changes in PCR conditions. Analyses of the macro and microbiome from passively collected arthropod samples are thus well worth pursuing.

Cite

CITATION STYLE

APA

Krehenwinkel, H., Fong, M., Kennedy, S., Huang, E. G., Noriyuki, S., Cayetano, L., & Gillespie, R. (2018). The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota. PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0189188

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free