When is there a representer theorem?: Nondifferentiable regularisers and Banach spaces

6Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We consider a general regularised interpolation problem for learning a parameter vector from data. The well known representer theorem says that under certain conditions on the regulariser there exists a solution in the linear span of the data points. This is at the core of kernel methods in machine learning as it makes the problem computationally tractable. Necessary and sufficient conditions for differentiable regularisers on Hilbert spaces to admit a representer theorem have been proved. We extend those results to nondifferentiable regularisers on uniformly convex and uniformly smooth Banach spaces. This gives a (more) complete answer to the question when there is a representer theorem. We then note that for regularised interpolation in fact the solution is determined by the function space alone and independent of the regulariser, making the extension to Banach spaces even more valuable.

Cite

CITATION STYLE

APA

Schlegel, K. (2019). When is there a representer theorem?: Nondifferentiable regularisers and Banach spaces. Journal of Global Optimization, 74(2), 401–415. https://doi.org/10.1007/s10898-019-00767-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free