Airborne eddy covariance (EC) is one of the most effective ways to directly measure turbulent flux at a regional scale. This study aims to find the optimum spatial window length for turbulent heat fluxes calculation from airborne eddy covariance measurements under near neutral to unstable atmospheric stability conditions, to reduce the negative influences from mesoscale turbulence, and to estimate local meaningful turbulent heat fluxes accurately. The airborne flux measurements collected in 2008 in the Netherlands were used in this study. Firstly, the raw data was preprocessed, including de-spike, segmentation, and stationarity test. The atmospheric stability conditions were classified as near neutral, moderately unstable, or very unstable; the stable condition was excluded. Secondly, Ogive analysis for turbulent heat fluxes from all available segmentations of the airborne measurements was used to determine the possible window length range. After that, the optimum window length for turbulent heat flux calculations was defined based on the analysis of all possible window lengths and their uncertainties. The results show that the choice of the optimum window length strongly depends on the atmospheric stability conditions. Under near neutral conditions, local turbulence is mixed insufficiently and vulnerable to heterogeneous turbulence. A relatively short window length is needed to exclude the influence of mesoscale turbulence, and we found the optimum window length ranges from 2000 m to 2500 m. Under moderately unstable conditions, the typical scale of local turbulence is relative large, and the influence of mesoscale turbulence is relatively small. We found the optimum window length ranges from 3900 m to 5000 m. Under very unstable conditions, large convective eddies dominate the transmission of energy so that the window length needs to cover the large eddies with large energy transmission. We found the optimum window length ranges from 4500 m to 5000 m. This study gives a comprehensive methodology to determine the optimizing window length in order to compromise a balance between the accuracy and the surface representativeness of turbulent heat fluxes from airborne EC measurements.
CITATION STYLE
Sun, Y., Jia, L., Chen, Q., & Zheng, C. (2018). Optimizing window length for turbulent heat flux calculations from airborne eddy covariance measurements under near neutral to unstable atmospheric stability conditions. Remote Sensing, 10(5). https://doi.org/10.3390/rs10050670
Mendeley helps you to discover research relevant for your work.