Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat

397Citations
Citations of this article
378Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome-editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock-down of TaEDR1 by virus-induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off-target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew-induced cell death. Our study represents the successful generation of a potentially valuable trait using genome-editing technology in wheat and provides germplasm for disease resistance breeding.

Cite

CITATION STYLE

APA

Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., & Tang, D. (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal, 91(4), 714–724. https://doi.org/10.1111/tpj.13599

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free