The research of mobile robot path planning has shifted from the static environment to the dynamic environment, from the two-dimensional environment to the high-dimensional environment, and from the single-robot system to the multi-robot system. As the core technology for mobile robots to realize autonomous positioning and navigation, path-planning technology should plan collision-free and smooth paths for mobile robots in obstructed environments, which requires path-planning algorithms with a certain degree of intelligence. Metaheuristic algorithms are widely used in various optimization problems due to their algorithmic intelligence, and they have become the most effective algorithm to solve complex optimization problems in the field of mobile robot path planning. Based on a comprehensive analysis of existing path-planning algorithms, this paper proposes a new algorithm classification. Based on this classification, we focus on the firefly algorithm (FA) and the cuckoo search algorithm (CS), complemented by the dragonfly algorithm (DA), the whale optimization algorithm (WOA), and the sparrow search algorithm (SSA). During the analysis of the above algorithms, this paper summarizes the current research results of mobile robot path planning and proposes the future development trend of mobile robot path planning.
CITATION STYLE
Xu, Y., Li, Q., Xu, X., Yang, J., & Chen, Y. (2023, August 1). Research Progress of Nature-Inspired Metaheuristic Algorithms in Mobile Robot Path Planning. Electronics (Switzerland). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/electronics12153263
Mendeley helps you to discover research relevant for your work.