Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/Amphiphysin/Rvs (BAR) domains

40Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cellular proteins containing Bin/amphiphysin/Rvs (BAR) domains play a key role in clathrin-mediated endocytosis. Despite extensive structural and functional studies of BAR domains, it is still unknown how exactly these domains interact with the plasma membrane containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and whether they function by a universal mechanism or by different mechanisms. Here we report that PtdIns(4,5)P2 specifically induces partial membrane penetration of the N-terminal amphiphilic α-helix (H0) of two representative N-BAR domains from Drosophila amphiphysin (dAmp-BAR) and rat endophilin A1 (EndoA1-BAR). Our quantitative fluorescence imaging analysis shows that PtdIns(4,5)P2-dependent membrane penetration of H0 is important for self-association of membrane-bound dAmp-BAR and EndoA1-BAR and their membrane deformation activity. EndoA1-BAR behaves differently from dAmp-BAR because the former has an additional amphiphilic α-helix that penetrates the membrane in a PtdIns(4,5)P2-independent manner. Depletion of PtdIns(4,5)P2 from the plasma membrane of HEK293 cells abrogated the membrane deforming activity of EndoA1-BAR and dAmp-BAR. Collectively, these studies suggest that the local PtdIns(4,5)P2 concentration in the plasma membrane may regulate the membrane interaction and deformation by N-BAR domain-containing proteins during clathrin-mediated endocytosis. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Yoon, Y., Zhang, X., & Cho, W. (2012). Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/Amphiphysin/Rvs (BAR) domains. Journal of Biological Chemistry, 287(41), 34078–34090. https://doi.org/10.1074/jbc.M112.372789

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free