The recovery of wasted energy present in the ambient that is a reject of artificial or natural processes to power wireless electronics is paving the way for enabling a huge number of applications. One of the main targeted technologies that meets the levels of harvestable power, typically few hundreds of microwatts, is represented by wireless sensor networks (WSNs). This technology consists of a grid of spatially-distributed wireless nodes that sense and communicate information like acceleration, temperature, pressure, toxicity of the air, biological parameters, magnetic field, light intensity and so on, among each other and up to the end user through a fixed server. In the next years, WSNs will be massively employed in a wide range of applications such as structural monitoring, industrial sensing, remote healthcare, military equipment, surveillance, logistic tracking and automotive monitoring. In fact, harvesting energy directly from the ambient not only represents a realistic mean to integrate or substitute batteries, but is the sole way for enabling many contemporary and future wireless applications that will be all integrated in the so called “internet of things”
CITATION STYLE
Vocca, H., & Cottone, F. (2014). Kinetic Energy Harvesting. In ICT - Energy - Concepts Towards Zero - Power Information and Communication Technology. InTech. https://doi.org/10.5772/57091
Mendeley helps you to discover research relevant for your work.