An assessment is presented on the relative forecast impact on the performance of a numerical weather prediction model from eight different observation data types: aircraft, profiler, radiosonde, velocity azimuth display (VAD), GPS-derived precipitable water, aviation routine weather report (METAR; surface), surface mesonet, and satellite-based atmospheric motion vectors. A series of observation sensitivity experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied to assess the relative importance of the different data types for short-range (3-12h) wind, temperature, and relative humidity forecasts at different vertical levels and near the surface. These experiments were conducted for two 10-day periods, one in November-December 2006 and one in August 2007. These experiments show positive short-range forecast impacts from most of the contributors to the heterogeneous observing system over the RUC domain. In particular, aircraft observations had the largest overall impact for forecasts initialized 3-6h before 0000 or 1200 UTC, considered over the full depth (1000-100 hPa), followed by radiosonde observations, even though the latter are available only every 12 h. Profiler data (including at a hypothetical 8-km depth), GPS-precipitable water estimates, and surface observations also led to significant improvements in short-range forecast skill. © 2010 American Meteorological Society.
CITATION STYLE
Benjamin, S. G., Jamison, B. D., Moninger, W. R., Sahm, S. R., Schwartz, B. E., & Schlatter, T. W. (2010). Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Monthly Weather Review, 138(4), 1319–1343. https://doi.org/10.1175/2009MWR3097.1
Mendeley helps you to discover research relevant for your work.