This study reports on the implementation of Bayesian inference to improve the estimation of remote-depth profiling for low-level radioactive contaminants with a low-resolution NaI(Tl) detector. In particular, we demonstrate that this approach offers results that are more reliable because it provides a mean value with a 95% credible interval by determining the probability distributions of the burial depth and activity of a radioisotope in a single measurement. To evaluate the proposed method, the simulation was compared with experimental measurements. The simulation showed that the proposed method was able to detect the depth of a Cs-137 point source buried below 60 cm in sand, with a 95% credible interval. The experiment also showed that the maximum detectable depths for weakly active 0.94-µCi Cs-137 and 0.69-µCi Co-60 sources buried in sand was 21 cm, providing an improved performance compared to existing methods. In addition, the maximum detectable depths hardly degraded, even with a reduced acquisition time of less than 60 s or with gain-shift effects; therefore, the proposed method is appropriate for the accurate and rapid non-intrusive localization of buried low-level radioactive contaminants during in situ measurement.
CITATION STYLE
Kim, J., Lim, K. T., Park, K., & Cho, G. (2019). A bayesian approach for remote depth estimation of buried low-level radioactive waste with a nai(Tl) detector. Sensors (Switzerland), 19(24). https://doi.org/10.3390/s19245365
Mendeley helps you to discover research relevant for your work.