The Influence of Heatmap Correlation-based Feature Selection on Predictive Modeling of Low Alloy Steel Mechanical Properties Using Artificial Neural Network (ANN) Algorithm

  • Leni D
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

This study aims to evaluate the influence of heatmap correlation-based feature selection on predictive modeling of low alloy steel mechanical properties using an artificial neural network (ANN) algorithm. Heatmap correlation was used to determine the chemical elements most correlated to the low alloy steel mechanical properties, such as Yield strength (YS) and Tensile strength (TS). There were 15 input variables of chemical elements in this study, and after feature selection, 11 input variables were obtained for YS, and 13 input variables were obtained for TS. The ANN model was validated using K-fold 10 cross-validation and evaluated using loss metric, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). The results showed that modeling with feature selection was able to improve the YS prediction, with a decrease in value of 6.83% in MAE and 4.97% in RMSE, while the TS prediction decreased by 16.46% in MAE and 18.34% in RMSE after feature selection. These results indicate that the use of feature selection provides better performance compared to the model without feature selection, and heatmap correlation can be used as an alternative to improve model performance in predictive modeling of low alloy steel mechanical properties using the ANN algorithm. Informasi Artikel Abstrak Kata kunci: Heatmap, Baja paduan rendah, Pemodelan, Artificial neural network (ANN), Penelitian ini bertujuan untuk mengevaluasi pengaruh seleksi fitur berbasis heatmap correlation pada pemodelan prediksi sifat mekanik baja paduan rendah menggunakan algoritma artificial neural network (ANN). Heatmap correlation digunakan untuk menentukan unsur kimia yang paling berkorelasi terhadap sifat mekanik baja paduan rendah seperti Yield strength (YS) dan Tensile strength (TS). Pada penelitian ini terdapat 15 variebl input unsur kimia dan setelah dilakukan seleksi fitur diperoleh 11 variabel input untuk YS dan 13 variabel input untuk TS. Model ANN divalidasi menggunakan K-fold 10 cross validation dan dievaluasi menggunakan metrik Loss, Mean Absolute Error (MAE) dan Root Mean Square Error (RMSE). Hasil penelitian menunjukkan bahwa pemodelan dengan seleksi fitur mampu meningkatkan prediksi YS, dengan penurunan nilai sebesar 6.83% pada MAE dan 4.97% pada RMSE, sedangkan prediksi TS mengalami penurunan sebesar 16.46% pada MAE dan 18.34% pada RMSE setelah dilakukan seleksi fitur. Hasil ini menunjukkan bahwa, penggunaan seleksi fitur memberikan performa yang lebih baik dibandingkan dengan model tanpa seleksi fitur dan heatmap correlation dapat dijadikan sebagai alternatif untuk meningkatkan performa model pada pemodelan prediksi sifat mekanik baja paduan rendah menggunakan algoritma ANN.

Cite

CITATION STYLE

APA

Leni, D. (2023). The Influence of Heatmap Correlation-based Feature Selection on Predictive Modeling of Low Alloy Steel Mechanical Properties Using Artificial Neural Network (ANN) Algorithm. Journal of Energy, Material, and Instrumentation Technology, 4(4), 152–162. https://doi.org/10.23960/jemit.v4i4.203

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free