Heme oxygenase-1 protects against endotoxin-induced acute lung injury depends on NAD+-mediated mitonuclear communication through PGC1α/PPARγ signaling pathway

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Endotoxin-induced acute lung injury (ALI) is a challenging life-threatening disease for which no specific therapy exists. Mitochondrial dysfunction is corroborated as hallmarks in sepsis which commonly disrupt mitochondria-centered cellular communication networks, especially mitonuclear crosstalk, where the ubiquitous cofactor nicotinamide adenine dinucleotide (NAD+) is essential for mitonuclear communication. Heme oxygenase-1 (HO-1) is critical for maintaining mitochondrial dynamic equilibrium and regulating endoplasmic reticulum (ER) and Golgi stress to alleviating acute lung injury. However, it is unclear whether HO-1 regulates NAD+-mediated mitonuclear communication to exert the endogenous protection during endotoxin-induced ALI. In this study, we observed HO-1 attenuated endotoxin-induced ALI by regulated NAD+ levels and NAD+ affected the mitonuclear communication, including mitonuclear protein imbalance and UPRmt to alleviate lung damage. We also found the protective effect of HO-1 depended on NAD+ and NAD+-mediated mitonuclear communication. Furtherly, the inhibition of the PGC1α/PPARγ signaling exacerbates the septic lung injury by reducing NAD+ levels and repressing the mitonuclear protein imbalance and UPRmt. Altogether, our study certified that HO-1 ameliorated endotoxin-induced acute lung injury by regulating NAD+ and NAD+-mediated mitonuclear communications through PGC1α/PPARγ pathway. The present study provided complementary evidence for the cytoprotective effect of HO-1 as a potential target for preventing and attenuating of endotoxin-induced ALI.

Cite

CITATION STYLE

APA

He, S., Shi, J., Liu, W., Du, S., Zhang, Y., Gong, L., … Yu, J. (2022). Heme oxygenase-1 protects against endotoxin-induced acute lung injury depends on NAD+-mediated mitonuclear communication through PGC1α/PPARγ signaling pathway. Inflammation Research, 71(9), 1095–1108. https://doi.org/10.1007/s00011-022-01605-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free