Explainability has been a core research topic in AI for decades and therefore it is surprising that the current concept of Explainable AI (XAI) seems to have been launched as late as 2016. This is a problem with current XAI research because it tends to ignore existing knowledge and wisdom gathered over decades or even centuries by other relevant domains. This paper presents the notion of Contextual Importance and Utility (CIU), which is based on known notions and methods of Decision Theory. CIU extends the notions of importance and utility for the non-linear models of AI systems and notably those produced by Machine Learning methods. CIU provides a universal and model-agnostic foundation for XAI.
CITATION STYLE
Främling, K. (2020). Decision Theory Meets Explainable AI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12175 LNAI, pp. 57–74). Springer. https://doi.org/10.1007/978-3-030-51924-7_4
Mendeley helps you to discover research relevant for your work.