Efficient monitoring of organisms is at the foundation of protected area and biodiversity management. Such monitoring programs are based on a systematically selected set of survey locations that, while able to track trends at those locations through time, lack inference for the overall region being “monitored”. Advances in spatially-balanced sampling approaches offer alternatives but remain largely untested in marine ecosystems. This study evaluated the merit of using a two-stage, spatially-balanced survey framework, in conjunction with generalized additive models, to estimate epifauna cover at a reef-wide scale for mesophotic reefs within a large, cross-shelf marine park. Imagery acquired by an autonomous underwater vehicle was classified using a hierarchical scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI). At a realistic image subsampling intensity, the two-stage, spatially-balanced framework provided accurate and precise estimates of reef-wide cover for a select number of epifaunal classes at the coarsest CATAMI levels, in particular bryozoan and porifera classes. However, at finer hierarchical levels, accuracy and/or precision of cover estimates declined, primarily because of the natural rarity of even the most common of these classes/morphospecies. Ranked predictor importance suggested that bathymetry, backscatter and derivative terrain variables calculated at their smallest analysis window scales (i.e. 81 m 2 ) were generally the most important variables in the modeling of reef-wide cover. This study makes an important step in identifying the constraints and limitations that can be identified through a robust statistical approach to design and analysis. The two-stage, spatially-balanced framework has great potential for effective quantification of epifaunal cover in cross-shelf mesophotic reefs. However, greater image subsampling intensity than traditionally applied is required to ensure adequate observations for finer-level CATAMI classes and associated morphospecies.
CITATION STYLE
Monk, J., Barrett, N. S., Peel, D., Lawrence, E., Hill, N. A., Lucieer, V., & Hayes, K. R. (2018). An evaluation of the error and uncertainty in epibenthos cover estimates from AUV images collected with an efficient, spatially-balanced design. PLoS ONE, 13(9). https://doi.org/10.1371/journal.pone.0203827
Mendeley helps you to discover research relevant for your work.