The amplitude of the auditory N1 component of the event-related potential (ERP) is typically attenuated for self-initiated sounds, compared to sounds with identical acoustic and temporal features that are triggered externally. This effect has been ascribed to internal forward models predicting the sensory consequences of one's own motor actions. The predictive coding account of autistic symptomatology states that individuals with autism spectrum disorder (ASD) have difficulties anticipating upcoming sensory stimulation due to a decreased ability to infer the probabilistic structure of their environment. Without precise internal forward prediction models to rely on, perception in ASD could be less affected by prior expectations and more driven by sensory input. Following this reasoning, one would expect diminished attenuation of the auditory N1 due to self-initiation in individuals with ASD. Here, we tested this hypothesis by comparing the neural response to self- versus externally-initiated tones between a group of individuals with ASD and a group of age matched neurotypical controls. ERPs evoked by tones initiated via button-presses were compared with ERPs evoked by the same tones replayed at identical pace. Significant N1 attenuation effects were only found in the TD group. Self-initiation of the tones did not attenuate the auditory N1 in the ASD group, indicating that they may be unable to anticipate the auditory sensory consequences of their own motor actions. These results show that individuals with ASD have alterations in sensory attenuation of self-initiated sounds, and support the notion of impaired predictive coding as a core deficit underlying autistic symptomatology. Autism Res 2019, 12: 589–599. © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary: Many individuals with ASD experience difficulties in processing sensory information (for example, increased sensitivity to sound). Here we show that these difficulties may be related to an inability to anticipate upcoming sensory stimulation. Our findings contribute to a better understanding of the neural mechanisms underlying the different sensory perception experienced by individuals with ASD.
CITATION STYLE
van Laarhoven, T., Stekelenburg, J. J., Eussen, M. L. J. M., & Vroomen, J. (2019). Electrophysiological alterations in motor-auditory predictive coding in autism spectrum disorder. Autism Research, 12(4), 589–599. https://doi.org/10.1002/aur.2087
Mendeley helps you to discover research relevant for your work.