Store-Operated Ca2+ entry in tumor progression: From molecular mechanisms to clinical implications

45Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

The remodeling of Ca2+ homeostasis has been implicated as a critical event in driving malignant phenotypes, such as tumor cell proliferation, motility, and metastasis. Store-operated Ca2+ entry (SOCE) that is elicited by the depletion of the endoplasmic reticulum (ER) Ca2+ stores constitutes the major Ca2+ influx pathways in most nonexcitable cells. Functional coupling between the plasma membrane Orai channels and ER Ca2+-sensing STIM proteins regulates SOCE activation. Previous studies in the human breast, cervical, and other cancer types have shown the functional significance of STIM/Orai-dependent Ca2+ signals in cancer development and progression. This article reviews the information on the regulatory mechanisms of STIM- and Orai-dependent SOCE pathways in the malignant characteristics of cancer, such as proliferation, resistance, migration, invasion, and metastasis. The recent investigations focusing on the emerging importance of SOCE in the cells of the tumor microenvironment, such as tumor angiogenesis and antitumor immunity, are also reviewed. The clinical implications as cancer therapeutics are discussed.

Cite

CITATION STYLE

APA

Chen, Y. F., Lin, P. C., Yeh, Y. M., Chen, L. H., & Shen, M. R. (2019, July 1). Store-Operated Ca2+ entry in tumor progression: From molecular mechanisms to clinical implications. Cancers. MDPI AG. https://doi.org/10.3390/cancers11070899

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free