A one-step sol-gel method for SrSnO3 nanoparticle synthesis and the incorporation of multi-walled carbon nanotubes (MWCNTs) to produce a SrSnO3@MWCNT photocatalyst is presented. The incorporation of MWCNTs results in enhancement of structural, optical, and optoelectrical properties of SrSnO3. The optimized 3.0% addition of MWCNTs results in light absorption enhancement and a reduction of the band gap from 3.68 to 2.85 eV. Upon application of the photocatalyst in the photocatalytic hydrogen production reaction, SrSnO3@MWCNT-3.0% yields 4200 μmol g-1 of H2 in just 9 h with the use of 1.6 g L-1 of the photocatalyst. SrSnO3@MWCNT exhibits remarkable chemical and photocatalytic stability upon regeneration. Enhanced photocatalytic ability is attributed to improved surface properties and charge-carrier recombination suppression induced by the MWCNT addition. This study highlights the remarkable improvements in chemical and physical properties of semiconductors with MWCNT incorporation.
CITATION STYLE
Kadi, M. W., & Mohamed, R. M. (2021). SrSnO3-Assembled MWCNT Heterojunctions for Superior Hydrogen Production under Visible Light. ACS Omega, 6(45), 30534–30541. https://doi.org/10.1021/acsomega.1c04143
Mendeley helps you to discover research relevant for your work.