The primary process in the thermal degradation of PVC in an inert atmosphere and at relatively low temperatures, is the elimination of hydrogen chloride molecules and the formation of polyene sequences of different lengths. The polyenes formed are highly reactive and participate in different secondary reactions. It has been shown for PVC samples degraded both in dilute solution and in the solid state that the amount of polyenes does not correspond to the degree of dehydrochlorination: proportionality may be observed only at the initial stage of degradation and, later on, the number of double bonds in the system is much lower than the amount of hydrogen chloride molecules split off. With the increase of conversion the increase in the amount of polyenes containing three or more double bonds gradually slows down and, later on, practically ceases. This phenomenon is also quantitatively well interpretable by intramolecular cyclization (backbiting) of polyenes. The reaction leads to cyclo-hexadiene structures. On completing the kinetic treatment of the process, we determined the relative rate constant of cyclization. Reactive dienophilic reagents readily react with the polyenes formed in degraded PVC. Based on the changes observed in the u.v. and visible spectra, a kinetic study was made on the Diels-- Alder reaction with chloromaleic anhydride. The kinetic treatment, performed on the basis of a presumed mechanism, allowed the determination of the rate constants and their temperature dependence. Depending on the experimental conditions, the polyenes formed in the course of degradation may participate in other reactions as well. Some of the possible reaction routes are: the change in molecular weight, the formation of low molecular weight aromatic compounds (e.g. benzene) and the considerable proton exchange observed in the reaction of polyenes with hydrochloric acid. © 1974, IEEE. All rights reserved.
CITATION STYLE
Tübös, F., Kelen, T., Nagy, T. T., & Turcsanyi, B. T. (1974). Polymer-Analogous Reactions of Polyenes in Poly(Vinyl Chloride). Pure and Applied Chemistry, 38(1–2), 201–226. https://doi.org/10.1351/pac197438010201
Mendeley helps you to discover research relevant for your work.