Modeling Nutrition Quality and Storage of Forage Using Climate Data and Normalized-Difference Vegetation Index in Alpine Grasslands

28Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Quantifying forage nutritional quality and pool at various spatial and temporal scales are major challenges in quantifying global nitrogen and phosphorus cycles, and the carrying capacity of grasslands. In this study, we modeled forage nutrition quality and storage using climate data under fencing conditions, and using climate data and a growing-season maximum normalized-difference vegetation index under grazing conditions based on four different methods (i.e., multiple linear regression, random-forest models, support-vector machines and recursive-regression trees) in the alpine grasslands of Tibet. Our results implied that random-forest models can have greater potential ability in modeling forage nutrition quality and storage than the other three methods. The relative biases between simulated nutritional quality using random-forest models and the observed nutritional quality, and between simulated nutrition storage using random-forest models and the observed nutrition storage, were lower than 2.00% and 6.00%, respectively. The RMSE between simulated nutrition quality using random-forest models and the observed nutrition quality, and between simulated nutrition storage using random-forest models and the observed nutrition storage, were no more than 0.99% and 4.50 g m−2, respectively. Therefore, random-forest models based on climate data and/or the normalized-difference vegetation index can be used to model forage nutrition quality and storage in the alpine grasslands of Tibet.

Cite

CITATION STYLE

APA

Han, F., Fu, G., Yu, C., & Wang, S. (2022). Modeling Nutrition Quality and Storage of Forage Using Climate Data and Normalized-Difference Vegetation Index in Alpine Grasslands. Remote Sensing, 14(14). https://doi.org/10.3390/rs14143410

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free