Neutralized empirical risk minimization with generalization neutrality bound

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Currently, machine learning plays an important role in the lives and individual activities of numerous people. Accordingly, it has become necessary to design machine learning algorithms to ensure that discrimination, biased views, or unfair treatment do not result from decision making or predictions made via machine learning. In this work, we introduce a novel empirical risk minimization (ERM) framework for supervised learning, neutralized ERM (NERM) that ensures that any classifiers obtained can be guaranteed to be neutral with respect to a viewpoint hypothesis. More specifically, given a viewpoint hypothesis, NERM works to find a target hypothesis that minimizes the empirical risk while simultaneously identifying a target hypothesis that is neutral to the viewpoint hypothesis. Within the NERM framework, we derive a theoretical bound on empirical and generalization neutrality risks. Furthermore, as a realization of NERM with linear classification, we derive a max-margin algorithm, neutral support vector machine (SVM). Experimental results show that our neutral SVM shows improved classification performance in real datasets without sacrificing the neutrality guarantee. © 2014 Springer-Verlag.

Cite

CITATION STYLE

APA

Fukuchi, K., & Sakuma, J. (2014). Neutralized empirical risk minimization with generalization neutrality bound. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8724 LNAI, pp. 418–433). Springer Verlag. https://doi.org/10.1007/978-3-662-44848-9_27

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free