Determination of traces of molybdenum and lead in foods by x-ray fluorescence spectrometry

21Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An Energy Dispersive X-ray Fluorescence (EDXRF) method using X-ray emitting isotopes in combination with pre-concentration by carbonization was developed to determine the levels of Mo and Pb accumulated in foods. The samples were carbonized at temperatures range of 150-400°C for 15 min to 2 h for powdering. The powder was then quickly formed into a pellet for EDXRF analysis. This analytical method (detection limit, 0.08 mg/kg) was used to determine levels of Mo and Pb in several kinds of foods from the local kitchen markets. The analytical results indicated that higher concentration of Mo (2.51 ± 0.09 mg/kg) and Pb (0.62 ± 0.13 mg/kg) was present in pulse. The maximum lead concentration is also found in pulses with the mean value of, which is far below the maximum permissible limit (ASP, pp 235, 1980) of Pb in food (1-5 mg/kg). The possibility of determination of traces of Mo and Pb in foods by x-ray fluorescence after carbonization is evaluated by comparative studies of standard reference materials. The method enables fast and direct analysis to be carried out without lengthy sample pretreatment and thereby minimizing sample contamination on a routine basis for food monitoring. No loss (<5%) of Mo and Pb is observed and a significant matrix reduction is achieved. Our findings highlighted that this method could be used for monitoring the levels of heavy metals (like Mo and Pb) accumulation in foods within short time and people can avoid health risk due to toxic effect of food. © 2014 Ali et al.; licensee Springer.

Cite

CITATION STYLE

APA

Ali, M., Choudhury, T. R., Hossain, B., & Ali, M. P. (2014). Determination of traces of molybdenum and lead in foods by x-ray fluorescence spectrometry. SpringerPlus, 3(1), 1–9. https://doi.org/10.1186/2193-1801-3-341

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free