Computational study on bidimensionality theory based algorithm for longest path problem

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Bidimensionality theory provides a general framework for developing subexponential fixed parameter algorithms for NP-hard problems. In this framework, to solve an optimization problem in a graph G, the branchwidth is first computed or estimated. If is small then the problem is solved by a branch-decomposition based algorithm which typically runs in polynomial time in the size of G but in exponential time in . Otherwise, a large implies a large grid minor of G and the problem is computed or estimated based on the grid minor. A representative example of such algorithms is the one for the longest path problem in planar graphs. Although many subexponential fixed parameter algorithms have been developed based on bidimensionality theory, little is known on the practical performance of these algorithms. We report a computational study on the practical performance of a bidimensionality theory based algorithm for the longest path problem in planar graphs. The results show that the algorithm is practical for computing/estimating the longest path in a planar graph. The tools developed and data obtained in this study may be useful in other bidimensional algorithm studies. © 2011 Springer-Verlag.

Cite

CITATION STYLE

APA

Wang, C., & Gu, Q. P. (2011). Computational study on bidimensionality theory based algorithm for longest path problem. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7074 LNCS, pp. 364–373). https://doi.org/10.1007/978-3-642-25591-5_38

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free