Amphibian skin secretion is an ideal source of antimicrobial peptides that are difficult to induce drug resistance to due to their membrane-targeting mechanism as a new treatment scheme. In this study, a natural antimicrobial peptide Temporin-1CEh was identified by molecular cloning and mass spectrometry from the skin secretions of the Chinese forest frog (Rana chensinensis). Through the study of the structure and biological activity, it was found that Temporin-1CEh was a helical peptide from the Temporin family, and possessed good anti-Gram-positive bacteria activity through the mechanism of membrane destruction. Seven analogues were further designed to obtain broad-spectrum antimicrobial activity and higher stability in different physiological conditions. The results showed that T1CEh-KKPWW showed potent antibacterial activity with significantly increasing the activity against Gram-negative bacteria in vitro and in vivo with low haemolysis. In addition, T1CEh-KKPWW2 showed high sensitivity to the pH, serum or salts conditions, which applied a branched structure to allow the active units of the peptide to accumulate. Even though the haemolytic activity was increased, the stable antibacterial activity made this novel analogue meet the conditions to become a potential candidate in future antimicrobial and antibiofilm applications.
CITATION STYLE
Ye, Z., Zhou, X., Xi, X., Zai, Y., Zhou, M., Chen, X., … Kwok, H. F. (2022). In Vitro & In Vivo Studies on Identifying and Designing Temporin-1CEh from the Skin Secretion of Rana chensinensis as the Optimised Antibacterial Prototype Drug. Pharmaceutics, 14(3). https://doi.org/10.3390/pharmaceutics14030604
Mendeley helps you to discover research relevant for your work.