Simulation analysis of fertilizer discharge process using the Discrete Element Method (DEM)

27Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Fertilizer discharge process is a critical part of fertilizer application, as it affects the fertilizer discharge rate and uniformity of fertilizer application. In this study, a spiral grooved-wheel fertilizer discharge device was designed to replace the conventional straight grooved-wheel. Comparisons of the fertilizer discharge performance of the two grooved-wheel types were performed through tests and simulations using the discrete element method (DEM). The discharge performance of the two discharge devices was assessed by measuring the discharge mass rate, discharge uniformity, and the falling velocity of the fertilizer particles. Results showed that under similar conditions, the fertilizer discharge mass rate of the spiral grooved-wheel was higher than that of the straight grooved-wheel. The fertilizer discharge uniformity of the spiral grooved-wheel was much better than that of the straight grooved-wheel. The average falling velocity of fertilizer particles through the discharge spout was higher under the spiral grooved-wheel. The relative errors between the test and simulation results for the discharge mass rates, discharge uniformity, and particle falling velocities of the spiral grooved-wheel were all less than 10%. The developed spiral grooved-wheel exhibited a better performance than the conventional straight grooved-wheel, in all the aspects examined. The results serve as a theoretical basis for guiding the design of high-performance fertilizer applicators.

Cite

CITATION STYLE

APA

Bangura, K., Gong, H., Deng, R., Tao, M., Liu, C., Cai, Y., … Qi, L. (2020). Simulation analysis of fertilizer discharge process using the Discrete Element Method (DEM). PLoS ONE, 15(7). https://doi.org/10.1371/journal.pone.0235872

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free