What makes a neural code convex?

45Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Neural codes allow the brain to represent, process, and store information about the world. Combinatorial codes, comprised of binary patterns of neural activity, encode information via the collective behavior of populations of neurons. A code is called convex if its codewords correspond to regions defined by an arrangement of convex open sets in Euclidean space. Convex codes have been observed experimentally in many brain areas, including sensory cortices and the hippocampus, where neurons exhibit convex receptive fields. What makes a neural code convex? That is, how can we tell from the intrinsic structure of a code if there exists a corresponding arrangement of convex open sets? In this work, we provide a complete characterization of local obstructions to convexity. This motivates us to define max intersection-complete codes, a family guaranteed to have no local obstructions. We then show how our characterization enables one to use free resolutions of Stanley–Reisner ideals in order to detect violations of convexity. Taken together, these results provide a significant advance in our understanding of the intrinsic combinatorial properties of convex codes.

Cite

CITATION STYLE

APA

Curto, C., Gross, E., Jeffries, J., Morrison, K., Omar, M., Rosen, Z., … Youngs, N. (2017). What makes a neural code convex? SIAM Journal on Applied Algebra and Geometry, 1(1), 222–238. https://doi.org/10.1137/16M1073170

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free