Adventitious roots (ARs) are important for some plants that depend on clonal propagation. In this study, we demonstrate that a salt-responsive gene module is involved in the negative regulation of AR development in poplar. In this module, the expression of bZIP53 is induced by salt stress and it encodes a transcription factor with transactivation activity. Overexpression or induced expression of bZIP53 in poplar lines resulted in inhibition of AR growth, while heterologous overexpression of bZIP53 in Arabidopsis resulted in a similar phenotype. Results from RNA-seq and RT-qPCR assays predicted IAA4-1 and IAA4-2 to be downstream genes that were regulated by bZIP53. Further investigation of protein-DNA interactions using yeast one-hybrid, electrophoretic mobility shift, dual luciferase reporter, and GUS co-expression assays also showed that IAA4-1/2 were the genes that were directly regulated by bZIP53. Induced-expression IAA4-1/2 transgenic poplar lines also showed inhibited AR growth. In addition, both poplar bZIP53 and IAA4-1/2 showed a response to salt stress. On the basis of these results, we conclude that the bZIP53-IAA4 module is involved in the negative regulation of AR development in poplar.
CITATION STYLE
Zhang, Y., Yang, X., Cao, P., Xiao, Z., Zhan, C., Liu, M., … Wang, N. (2020). The bZIP53-IAA4 module inhibits adventitious root development in Populus. Journal of Experimental Botany, 71(12), 3485–3498. https://doi.org/10.1093/jxb/eraa096
Mendeley helps you to discover research relevant for your work.