In response to extracellular ATP, the purinergic receptor P2X7 mediates various biological processes, including phosphatidylserine (PtdSer) exposure, phospholipid scrambling, dye uptake, ion transport, and IL-1β production. A genome-wide CRISPR screen for molecules responsible for ATP-induced PtdSer exposure identified a transmembrane protein, essential for reactive oxygen species (Eros), as a necessary component for P2X7 expression. An Eros-null mouse T cell line lost the ability to expose PtdSer, to scramble phospholipids, and to internalize a dye YO-PRO-1 and Ca2+ ions. Eros-null mutation abolished the ability of an LPS-primed human THP-1 macrophage cell line and mouse bone marrow–derived macrophages to secrete IL-1β in response to ATP. Eros is localized to the endoplasmic reticulum and functions as a chaperone for NADPH oxidase components. Similarly, Eros at the endoplasmic reticulum transiently associated with P2X7 to promote the formation of a stable homotrimeric complex of P2X7. These results indicated that Eros acts as a chaperone not only for NADPH oxidase, but also for P2X7, and contributes to the innate immune reaction.
CITATION STYLE
Ryoden, Y., Fujii, T., Segawa, K., & Nagata, S. (2020). Functional Expression of the P2X7 ATP Receptor Requires Eros. The Journal of Immunology, 204(3), 559–568. https://doi.org/10.4049/jimmunol.1900448
Mendeley helps you to discover research relevant for your work.