Automated Classification of Breast Cancer Cells Using High-Throughput Holographic Cytometry

9Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Holographic cytometry is an ultra-high throughput quantitative phase imaging modality that is capable of extracting subcellular information from millions of cells flowing through parallel microfluidic channels. In this study, we present our findings on the application of holographic cytometry to distinguishing carcinogen-exposed cells from normal cells and cancer cells. This has potential application for environmental monitoring and cancer detection by analysis of cytology samples acquired via brushing or fine needle aspiration. By leveraging the vast amount of cell imaging data, we are able to build single-cell-analysis-based biophysical phenotype profiles on the examined cell lines. Multiple physical characteristics of these cells show observable distinct traits between the three cell types. Logistic regression analysis provides insight on which traits are more useful for classification. Additionally, we demonstrate that deep learning is a powerful tool that can potentially identify phenotypic differences from reconstructed single-cell images. The high classification accuracy levels show the platform’s potential in being developed into a diagnostic tool for abnormal cell screening.

Cite

CITATION STYLE

APA

Chen, C. X., Park, H. S., Price, H., & Wax, A. (2021). Automated Classification of Breast Cancer Cells Using High-Throughput Holographic Cytometry. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.759142

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free