Multiple Convolutional Neural Networks fusion using improved fuzzy integral for facial emotion recognition

22Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Facial expressions are indispensable in human cognitive behaviors since it can instantly reveal human emotions. Therefore, in this study, Multiple Convolutional Neural Networks using Improved Fuzzy Integral (MCNNs-IFI) were proposed for recognizing facial emotions. Since effective facial expression features are difficult to design; deep learning CNN is used in the study. Each CNN has its own advantages and disadvantages, thus combining multiple CNNs can yield superior results. Moreover, multiple CNNs combined with improved fuzzy integral, in which its fuzzy density value is optimized through particle swarm optimization (PSO), overcomes the majority decision drawback in the traditional voting method. Two Multi-PIE and CK+ databases and three main CNN structures, namely AlexNet, GoogLeNet, and LeNet, were used in the experiments. To verify the results, a cross-validation method was used, and experimental results indicated that the proposed MCNNs-IFI exhibited 12.84% higher accuracy than that of the three CNNs.

Cite

CITATION STYLE

APA

Lin, C. J., Lin, C. H., Wang, S. H., & Wu, C. H. (2019). Multiple Convolutional Neural Networks fusion using improved fuzzy integral for facial emotion recognition. Applied Sciences (Switzerland), 9(13). https://doi.org/10.3390/app9132593

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free