Climate models are subject to high parametric uncertainty induced by poorly confined model parameters of parameterized physical processes. Uncertain model parameters are typically calibrated in order to increase the agreement of the model with available observations. The common practice is to adjust uncertain model parameters manually, often referred to as expert tuning, which lacks objectivity and transparency in the use of observations. These shortcomings often haze model inter-comparisons and hinder the implementation of new model parameterizations. Methods which would allow to systematically calibrate model parameters are unfortunately often not applicable to state-of-the-art climate models, due to computational constraints facing the high dimensionality and non-linearity of the problem. Here we present an approach to objectively calibrate a regional climate model, using reanalysis driven simulations and building upon a quadratic metamodel presented by Neelin et al. (2010) that serves as a computationally cheap surrogate of the model. Five model parameters originating from different parameterizations are selected for the optimization according to their influence on the model performance. The metamodel accurately estimates spatial averages of 2 m temperature, precipitation and total cloud cover, with an uncertainty of similar magnitude as the internal variability of the regional climate model. The non-linearities of the parameter perturbations are well captured, such that only a limited number of 20-50 simulations are needed to estimate optimal parameter settings. Parameter interactions are small, which allows to further reduce the number of simulations. In comparison to an ensemble of the same model which has undergone expert tuning, the calibration yields similar optimal model configurations, but leading to an additional reduction of the model error. The performance range captured is much wider than sampled with the expert-tuned ensemble and the presented methodology is effective and objective. It is argued that objective calibration is an attractive tool and could become standard procedure after introducing new model implementations, or after a spatial transfer of a regional climate model. Objective calibration of parameterizations with regional models could also serve as a strategy toward improving parameterization packages of global climate models. © 2012. American Geophysical Union. All Rights Reserved.
CITATION STYLE
Bellprat, O., Kotlarski, S., Lthi, D., & Schr, C. (2012). Objective calibration of regional climate models. Journal of Geophysical Research Atmospheres, 117(23). https://doi.org/10.1029/2012JD018262
Mendeley helps you to discover research relevant for your work.