Cervical cancer remains a primary cause of female death in developing countries, but its prognosis can be greatly improved if patients are diagnosed earlier. In the present study, we screened the common differentially expressed genes (DEGs) of cervical squamous cell carcinoma (CESC) from dataset GSE7803, Gene Expression Omnibus, and The Cancer Genome Atlas databases. An integrated bioinformatics analysis was performed based on these DEGs for their enrichment in functions and pathways, interaction network, prognostic signature, and candidate molecular drugs. As a result, 164 (114 upregulated and 47 downregulated) DEGs of CESC were identified for further investigation. We then conducted the gene ontology term enrichment and Kyoto Encyclopedia of Genes and Genomes Pathway analyses to reveal the underlying functions and pathways of these DEGs. In the protein-protein interaction network, hub module and hub genes were identified. Five genes of significant prognostic value-DSG2, ITM2A, CENPM, RIBC2, and MEIS2-were identified by prognostic signature analysis and used to construct a risk linear model. Further validation and investigation suggested DSG2 might be a key gene in CESC prognosis. We then identified two candidate small molecules (trichostatin A and tanespimycin) against CESC. Further validation and exploration of these hub genes are warranted for future prospect in clinical applications.
CITATION STYLE
Meng, H., Liu, J., Qiu, J., Nie, S., Jiang, Y., Wan, Y., & Cheng, W. (2020). Identification of Key Genes in Association with Progression and Prognosis in Cervical Squamous Cell Carcinoma. DNA and Cell Biology, 39(5), 848–863. https://doi.org/10.1089/dna.2019.5202
Mendeley helps you to discover research relevant for your work.