Analysis of the Mechanical Behavior of Bolted Beam-Column Connections with Different Structural Forms

9Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In order to study the mechanical behavior of bolted beam-column connections, the accuracy and applicability of the finite element model were firstly validated according to the published experiments on end-plate connections using ABAQUS. Then, in order to discuss the mechanical behavior of connections, three semirigid connections which are convenient for prefabricated construction, including top-and-seat angle connections with web and ear plate, extended end-plate connection, and T-stub connection, were examined using numerical simulation analysis to study and compare their capacity, hysteretic behavior, ductility, and degradation characteristics in detail. The results showed that the finite element models that were built could effectively simulate the load bearing behavior of bolted connections under both single-direction loading and cyclic loading. The three connections showed good load bearing capacity. The connectors significantly affected the energy dissipation capacity under load. The extended end-plate connection demonstrated the best performance in both mechanical behavior and manufacture and installation, so it would therefore be the preferred option.

Cite

CITATION STYLE

APA

Yang, R., & Zhou, X. (2019). Analysis of the Mechanical Behavior of Bolted Beam-Column Connections with Different Structural Forms. Advances in Civil Engineering, 2019. https://doi.org/10.1155/2019/1967253

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free