Differential effects of coarse woody debris on microbial and soil properties in Pinus densiflora Sieb. et Zucc. forests

12Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Although coarse woody debris (CWD) is important for soil functioning, the mechanism which affects soil properties beneath CWD are unclear. Here, initial changes in microbial and soil properties were studied using homogenous CWD samples in eight Korean red pine (Pinus densiflora Sieb. et Zucc.) forests. For each forest, CWD samples (diameter: 11.1 ± 0.1 cm; length: 10.2 ± 0.0 cm) from similarly aged Korean red pine trees were laid on the mineral soil surface from May to June, 2016, and soils were sampled at points beneath CWD and at a distance of 1 m from the CWD after 1 year. Soils beneath the CWD had higher moisture but lower inorganic nitrogen (N) and a higher microbial biomass C (carbon)/N ratio than those sampled 1 m from the CWD. No differences in total C and N, labile C, pH, and C substrate utilization between the soils were significant. The difference in inorganic N between the soils decreased with increasing CWD decomposition, whereas that for microbial biomass fraction in total C and N increased correspondingly. Our results showed that soil microbial affinity for retaining N might become higher than that for retaining C under the presence of CWD, which possibly alters N availability and generates a spatial heterogeneity in forest soils.

Cite

CITATION STYLE

APA

Kim, S., Li, G., Han, S. H., Chang, H., Kim, H. J., & Son, Y. (2017, August 11). Differential effects of coarse woody debris on microbial and soil properties in Pinus densiflora Sieb. et Zucc. forests. Forests. MDPI AG. https://doi.org/10.3390/f8080292

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free