β-Arrestin-biased AT1R stimulation promotes extracellular matrix synthesis in renal fibrosis

23Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The renin-angiotensin system plays a critical role in the progression of renal fibrosis. Angiotensin II type 1 receptor (AT1R) belongs to the B family of the G protein-coupled receptor (GPCR) family. β-Arrestins are known as negative regulators of GPCRs. Recently, β-arrestins have been found to regulate multiple intracellular signaling pathways independent of G proteins. In this study we investigated the role of β-arrestins in regulating extracellular matrix (ECM) synthesis in renal fibrosis. The rat kidney fibroblast cell line (NRK-49F) was treated with the β-arrestin biased agonist [1-sar, 4, 8-ile]angiotensin II (SII), which does not initiate AT1R-G protein signaling. The cells were transfected with recombinant adenoviruses expressing β-arrestin-2 gene or small-interfering RNA (siRNA) targeting β-arrestin-2. The unilateral ureteral obstruction (UUO) model was used in vivo. mRNA and protein levels of β-arrestin-2, not β-arrestin-1, were significantly upregulated in the UUO kidney tissues. SII induced the tight binding of β-arrestin-2 with AT1R. SII increased the synthesis of collagen I and fibronectin in NRK-49F, which were abolished when pretreated with candesartan (AT1R blocker). Transfection of siRNA targeting β-arrestin-2 decreased the effects of SII on ECM synthesis. Overexpression of β-arrestin-2 enhanced SII-stimulated ECM synthesis. SII induced ERK1/2 phosphorylation in NRK-49F. Transfection of siRNA targeting β-arrestin-2 inhibited ERK phosphorylation. Overexpression of β-arrestin-2 increased ERK1/2 phosphorylation. Our study first showed that AT1R-β-arrestin-2 pathway signaling plays an important role in renal fibrosis, although it was previously believed that the AT1R-G protein pathway plays a major role. Targeting β-arrestin-2 may be a potential therapeutic agent for renal fibrosis.

Cite

CITATION STYLE

APA

Wang, Y., Huang, J., Liu, X., Niu, Y., Zhao, L., Yu, Y., … Yu, C. (2017). β-Arrestin-biased AT1R stimulation promotes extracellular matrix synthesis in renal fibrosis. American Journal of Physiology - Renal Physiology, 313(1), F1–F8. https://doi.org/10.1152/ajprenal.00588.2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free