Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor

33Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Saccharomyces cerevisiae amino acid transceptor Gap1 functions as receptor for signalling to the PKA pathway and concomitantly undergoes substrate-induced oligo-ubiquitination and endocytosis. We have identified specific amino acids and analogues that uncouple to certain extent signalling, transport, oligo-ubiquitination and endocytosis. l-lysine, l-histidine and l-tryptophan are transported by Gap1 but do not trigger signalling. Unlike l-histidine, l-lysine triggers Gap1 oligo-ubiquitination without substantial induction of endocytosis. Two transported, non-metabolizable signalling agonists, β-alanine and d-histidine, are strong and weak inducers of Gap1 endocytosis, respectively, but both causing Gap1 oligo-ubiquitination. The non-signalling agonist, non-transported competitive inhibitor of Gap1 transport, l-Asp-γ-l-Phe, induces oligo-ubiquitination but no discernible endocytosis. The Km of l-citrulline transport is much lower than the threshold concentration for signalling and endocytosis. These results show that molecules can be transported without triggering signalling or substantial endocytosis, and that oligo-ubiquitination and endocytosis do not require signalling nor metabolism. Oligo-ubiquitination is required, but apparently not sufficient to trigger endocytosis. In addition, we demonstrate intracellular cross-induction of endocytosis of transport-defective Gap1Y395C by ubiquitination- and endocytosis-deficient Gap1K9R,K16R. Our results support the concept that different substrates bind to partially overlapping binding sites in the same general substrate-binding pocket of Gap1, triggering divergent conformations, resulting in different conformation-induced downstream processes. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

Cite

CITATION STYLE

APA

Van Zeebroeck, G., Rubio-Texeira, M., Schothorst, J., & Thevelein, J. M. (2014). Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor. Molecular Microbiology, 93(2), 213–233. https://doi.org/10.1111/mmi.12654

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free